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We exploit a recently developed formalism to study the temporal behavior of the energy and heat transport
in metals. This formalism shows the transition between ballistic and diffusive regimes and it highlights some
interesting effects such as oscillations in the energy transport at very short-time scales. The energy relaxation
of the conduction-band electrons in metals is considered to be governed by electron-phonon scattering, and the
scattering time is taken to be averaged over the Fermi surface. The analysis separates the diffusive and the
nondiffusive contributions to the heat transport. While the diffusive contribution shows an almost exponentially
decaying behavior with time, the nondiffusive part shows a damped oscillating behavior. The origin of this
oscillation will be discussed as well as the effect of the ambient temperature on the dynamics of the energy
modes transport.
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I. INTRODUCTION

Development of high-power short-pulse laser sources
with a pulse width in the sub-ps range has provided an op-
portunity to study the propagation of energy and heat at very
short-time scales; it has also created many applications in
thin-film analysis or in material processing. Ultrafast laser
sources have made possible the study of many interesting
fundamental physical phenomena in condensed matter such
as electrons transitions in semiconductors,1,2 electron-phonon
coupling in metals,3–7 and electron dynamics in semiconduc-
tor superlattices.8,9 Shorter laser pulses in the sub-fs range
have recently opened the field to explore electronic interac-
tions within the atom itself.10

Energy and heat transport during short-pulse laser heating
of solid materials is an important phenomenon that needs to
be fully understood to better control the abundant applica-
tions in which short-pulse lasers are used. The question of
energy and heat transport mechanisms at short-time scales is
the basis of numerous theoretical and experimental papers.
From the microscopic point of view, energy deposits into and
propagates through a material in different ways, depending
on the excitation, the structure of the material, and the nature
of the energy carriers. At short-time scales, Fourier’s law
becomes invalid and many non-Fourier energy conduction
models have been developed to overcome problems associ-
ated with Fourier’s model �e.g., infinite speed of propagation
of heat�.11–14 Most importantly, the distinction between dif-
fusive and nondiffusive �ballistic� regimes of energy trans-
port becomes very relevant at these short-time scales.15

Recently, Shastry16 has developed a formalism based on
linear theory to describe coupled charge and energy transport
in a solid material system. The formalism is general and
gives a set of equations for the electrothermal transport co-
efficients in the frequency-wave vector domain. One of the
most important results of this formalism is the introduction
of response functions describing the change in energy den-
sity, charge density, and the currents arising from the input
excitation �coefficients M1, M2, N1, and N2 as defined in the
reference article16�. Among these response functions, N2 is of
particular interest since this function gives a measure of the
change in energy density and hence temperature at various
points in the system in response to the applied excitation at

the top free surface of the system, and as such represents the
energy �heat� Green’s function of the system.

The objective of the current work is to analyze the tran-
sient energy and heat transport in metals occurring after ap-
plication of a heating source at the top free surface of the
metal in the frame work of the above mentioned formalism.
We will show how this formalism shows the transition be-
tween ballistic and diffusive regimes and it highlights some
interesting effects such as oscillations in the energy transport
at very short-time scales.

II. THEORY

The starting point of our analysis is the Shastry-Green
function N2 in the decoupled limit for metals. According to
Shastry’s work,16 the coupling factor � between charge and
energy modes can be expressed using the high-frequency
value of the thermoelectric figure-of-merit Z�T,

� =
Z�T

Z�T + 1
. �1�

Here Z� is the high-frequency limit of the Seebeck coeffi-
cient square times the electrical conductivity divided by the
thermal conductivity. It is well known however; that metals
are very poor thermoelectric materials with a very low ZT.17

The decoupled limit is thus justified. By turning off the cou-
pling between the charge and energy modes ��=0�, N2 can be
expressed as

N2��,q� =
− i + �q�

� + i�q�2 − iDeq
2 . �2�

We should note here that Eq. �2� is given for an arbitrary
applied power function P�t� at the top free surface of a metal.
This expression is a generalization of the one given by
Shastry in the case of a periodic power function.16 � is the
circular frequency, q is the electron wave vector, De is the
electronic thermal diffusivity, and �q is the total electron-
scattering time, which, in general, is a function of q. Re-
markably, in the case of a q-independent �q, the form of N2
in the frequency-wave vector domain resembles the expres-
sion of the energy density change at the top free surface of
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the metal, one would have derived using Cattaneo’s model
and solving the energy density equation for electrons in the
case of a delta power excitation applied to the same surface.
It is straightforward to convert the heat equation for electrons
to an energy density equation using the relation between the
electronic energy density �K and the electronic temperature
Te :�K�t ,x�= 1

2Ce�Te�Te�t ,x� where Ce is the electronic spe-
cific heat per unit volume. As we shall show later in the
discussion, the difference in the behavior between Cattaneo’s
model and Shastry’s model is due to the band cutoff effect in
the case of N2. Cattaneo’s model can be viewed as the con-
tinuous limit of N2.

In the following we consider a one-dimensional energy
transport problem, in which case we assume the top metal
free surface being excited by an input laser pulse of power
P�t�. The one-dimensional approximation is reasonable at
short-time scales considering the ratio of the size of the laser-
pulse spot to the diffusion length which in this case is small
on the order of the optical penetration depth. The later quan-
tity depends on the wavelength of the laser, but it is less than
10 nm over a large range of wavelengths for most metals.18

The optical penetration depth becomes even much shorter on
the order of 1 nm if very short wavelengths are used �e.g.,
UV with a frequency lower than the plasmon frequency of
the corresponding metal�.18 This is very useful since it vali-
dates the assumption we are making of a surface excitation.
Figure 1 shows a schematic of the metal under excitation,
where the laser pulse excites the top free surface �x=0�.

After excitation of the top metal free surface with a power
input P�t�, the change of the energy density in the frequency-
wave vector domain �K�� ,q� can be expressed as16

�K��,q� = N2��,q� � P̄��� , �3�

where P̄��� is the Fourier transform of P�t� in the frequency
domain. The change in the energy density at the top free
surface of the metal as function of time is obtained by a
double inverse Fourier transforms with respect to � and q,

�K�t,0� =
1

�2��2�
−�/a

�/a ��
−�

+�

N2��,q�P̄���ei�td��dq . �4�

The integration over q is taken over the first Brillouin zone
�FBZ� in the one-dimensional case, where “a” refers to the
lattice constant of the metal. The power source P�t� can be of
any form, but we will limit our study to the ideal case of a
Dirac delta function P�t�= P0���t� in order to capture the
intrinsic evolution of the energy density �K�t ,0� as a func-
tion of time: the temporal behavior of the energy density
Green’s function at the top free surface of the metal.

The integral within the square brackets in Eq. �4� can be
analytically calculated using the residue theorem. As a matter
of fact, the integrand of this integral has two single poles that
lie in the upper complex half plane. These poles are given,
respectively, by

�	 = i
1 	 �1 − 4De�qq2

2�q
. �5�

A straightforward calculation of the residues at these two
single poles leads to

P0�
−�

+�

N2��,q�ei�td� = 2�P0e−t/2�q�ch�Rqt

2�q
	 +

sh�Rqt

2�q
	

Rq

;

�6�

Rq = �1 − 4De�qq2.

Equation �4� can then be re-expressed as

�K�t,0� =
P0

2�
�

−�/a

�/a

e−t/2�q�ch�Rqt

2�q
	 +

sh�Rqt

2�q
	

Rq

dq . �7�

Up to now, the equations are completely general regardless
the dependence of the relaxation time on the wave vector.
Electron relaxation in the conduction band of metals is gov-
erned by two scattering processes; �i� electron-electron scat-
tering process and �ii� electron-phonon scattering process.19

In most metals, the second process is generally the dominant
one and the transport of energy by phonons can be neglected.
Using the fact that electrons and phonons in a metal can be
characterized by different temperatures, it has been shown
that scattering of electron by phonons can be either elastic or
inelastic, and the relaxation time is inversely proportional to
the lattice temperature.4,20–22 In the following, we consider
the case of a constant relaxation time �q=�F, which we con-
sider to be the average scattering time of electrons over the
Fermi surface of the metal. Equation �7� can be split into two
parts, depending on the sign of the argument of Rq. We can
write it down as

�K�t,0� = �K
�t,0� + �K��t,0� ,

�K
�t,0� =
P0

�
e−t/2�F�

0

q0 �ch� Rqt

2�F
	 +

sh� Rqt

2�F
	

Rq

dq ,

�8a�

�K��t,0� =
P0

�
e−t/2�F�

q0

qm �cos� R̄qt

2�F
	 +

sin� R̄qt

2�F
	

Rq


dq ,

qm =
�

a
; q0 =

1

2�De�F

and R̄q = �4De�Fq2 − 1. �8b�

The first part in Eq. �8� describes the diffusive contribution
and is exponentially decaying as function of time. On the

FIG. 1. �Color online� Schematic of the metal being excited by
a laser delta pulse at its free top surface �x=0�.
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other hand, the second part describes the nondiffusive part. It
is interesting to notice the oscillating character of the inte-
grand in Eq. �8b� which will result after integration over q in
a damped oscillating behavior.

In the section below, we will discuss the fundamental ori-
gin of the oscillating behavior that characterizes the nondif-
fusive contribution, as well as the effect of the ambient tem-
perature on the period and damping of these oscillations.

III. RESULTS AND DISCUSSION

At electron temperatures Te�TF, where TF is the Fermi
temperature, the electron thermal conductivity is given by

e=CevF

2�F /3,19 where vF is the Fermi velocity, �F is the
scattering relaxation time of electrons averaged over the
Fermi surface of the metal, and Ce�T� is the temperature-
dependent specific heat per unit volume of the electronic
system. Ce�T�=�2 /3kB

2g��F�T=�T where g��F� is the elec-
tronic density of states at the Fermi energy �F. The thermal
diffusivity of the electronic system in the conduction band of
the metal is then given by

De =

e

Ce
=

vF
2�F

3
. �9�

In Fig. 2, we have plotted the temporal behavior of the dif-
ferent contributions to the energy density Green’s function at
the top free surface of different metals at room temperature
T=300 K, as given by Eqs. �8a� and �8b�. More specifically
the vertical axis in these figures represents the quantity
�K�t ,0� / P0 which has the unit of the absorption coefficient
�m−1�. The higher is this quantity the higher is the energy
density and hence the temperature at the top free surface of
the metal. Values of the scattering relaxation time �F are
estimated based on the values of the electrical resistivity us-
ing Drude theory.19 Table I summarizes these values as well
as the values of the Fermi velocities and the electronic ther-
mal diffusivities of the different metals at room temperature.

TABLE I. Properties of the different metals used in the calcula-
tion at room temperature.

Metal
Lattice constant

�Å�

Relaxation
time �F

�fs�

Fermi velocity
vF

�106 m /s�

Electronic
thermal

diffusivity De

�m2 /s�

Au 4.08 28 1.4 0.0183

Cu 3.61 27 1.57 0.0222

Al 4.05 5.2 2.03 0.0071

(b)(a)

(c) (d)

FIG. 2. �Color online� Temporal behavior of the energy density Green’s function at the top free surface of different metals at room
temperature: �a� Eq. �8a�, �b� Eq. �8b�, �c� Zoom of figure �b�. �d� Whole integral in Eq. �8�.
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The left side of the integral as described by Eq. �8a�
shows a smooth decaying behavior as a function of time
which is almost an exponential �Fig. 2�a��. This behavior is
characteristic of the diffusive regime of the heat transport by
electrons. On the other hand, the right side of the integral
shows an oscillating behavior as a function of time �Fig.
2�b��. The oscillations are damped out exponentially with

time. Figure 2�c� shows a zoom of the oscillations over the
first 10 fs. The period of these fast oscillations can be esti-
mated using Eq. �8b� as follows.

For values of the wave vector q between q0 and qm, we
can with a very good approximation neglect 1 in the argu-

ment of R̄q, the latter becomes then R̄q
2q�De�F, and Eq.
�8b� can be rewritten as

�K��t,0� =
P0

�
e−t/2�F�

q0

qm �cos�q�De

�F
t	 +

sin�q�De

�F
t	

2q�De�F

dq . �10�

This integral can be calculated analytically, the result of which is given by

�K��t,0� =
P0

�
e−t/2�F� sin�qm�De

�F
t	 − sin� t

2�F
	

�De

�F
t

+

Si�qm�De

�F
t	 − Si� t

2�F
	

2�De�F 
 , �11�

where Si represents the Sine integral function given by
Si�z�=�0

z sin�x�
x dx.23

As we can see in this equation, the result contains two

main periods, �F=2� /qm�De

�F
and �S=4��F where �F and �S

describe the fast and slow oscillation periods, respectively.
Replacing the expression of qm and De into �F allows us to
write the fast oscillation period as

�F = 2�3
a

vF
. �12�

The fast oscillation is function only of the lattice constant of
the metal and its Fermi velocity, and is independent of the
scattering relaxation time of the electrons in the conduction
band. For almost all metals a�4 Å and vF is of the order of
1.4�106 m /s, a simple application of Eq. �12� shows then
that the period of this first oscillation is very small �F

1 fs, which makes it the fastest oscillation �Fig. 2�c��. On
the other hand, the slow oscillation period is proportional to
the total scattering relaxation time of electrons, which can be
of few tenths of femtoseconds. But because of the argument
of the exponential this slow oscillation is smoothed out
quickly and it cannot take place. Only the fast oscillation
survives over a few fs.

To the best of our knowledge, none of the previous non-
Fourier models has shown any kind of oscillating behavior in
the heat transport by either conduction-band electrons in
metals or phonons in semiconductors.11–15 As we have dis-
cussed earlier, the closest non-Fourier model to the present
work is Cattaneo’s model.11 Based on this model, it is
straightforward to show after a double Fourier transforms
with respect to time and space that we can obtain an expres-
sion for the ratio of the energy density to the delta input

power at top free surface of the metal, similar to N2 as given
by Eq. �2� above. Consequently, Cattaneo’s model describes
the diffusive regime using the same formula in Eq. �8a�. On
the other hand, because of the continuous character of the
model, the upper limit in the integral of Eq. �8b� is infinity,
and the nondiffusive regime is described differently from the
present work. We will discuss this fundamental point in the
last section of the discussion.

The oscillating behavior in the energy �heat� transport that
results from Shastry’s formalism is a consequence of the
band cutoff due to the discrete character of the lattice; the
oscillations are caused by Bragg reflections of ballistically
accelerated electrons at the boundaries of the first Brillouin
zone. These electrons can make many round trips within the
FBZ bouncing back and forth on the boundaries before they
damp out due scattering mechanisms inside this zone. The
ballistic electrons become afterward diffusive. This is illus-
trated by the difference of the amplitudes of �K
 / P0 and
�K� / P0 in Figs. 2�a� and 2�b�. At short-time scales, energy
and heat are mostly transported ballistically; the amplitude of
the ballistic contribution is higher than the amplitude of the
diffusive contribution and as the time goes by, the ballistic
regime transition to a diffusive regime. For higher electron
energies �high Fermi velocities�, the oscillation period is
shorter and the number of reflections is increased before bal-
listic energy transport damps out to a diffusive “thermal”
regime.

This oscillating behavior in the energy density modes can
be viewed as the analogous of the Bloch oscillations of the
electronic charge density in a metal subject to a uniform
electric field.8,9 The period of conventional electron Bloch
oscillations is inversely proportional to the lattice constant,
while this period is proportional to the lattice constant for the
energy density modes oscillations as shown in Eq. �12�. Fur-
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thermore, based on the wave vector separation value q0

=1 /2�De�F and the boundary of the FBZ, qm, we can define
the range of the wavelengths of electrons that contribute to
the diffusive and the ballistic regimes separately. The mean-
free path of an electron is defined by �F=vF�F, from which
is straightforward to show that q0 will be given by q0
=�3 /2�F. Then the wavelength of electrons that contribute
to the diffusive regime is �diff

e �
4�
�3

�F, and all electrons with

a wavelength 2a��ball
e �

4�
�3

�F contribute to the ballistic re-
gime.

In Fig. 3, we have plotted the behavior of the diffusive
contribution to the energy density at the top free surface of
different metals as calculated based on the present work �Eq.
�8a�� as a function of the nondimensional time �= t /�F, in
comparison to Fourier prediction which is simply given by
�KFourier�t ,0�= P0 /�4�Det. The diffusive contribution
�K
�t ,0� undergoes three different behaviors. It starts as a
constant at very short-time scales t
�F, then behaves as an
exponential decay up to about 8�F, from where it changes the

trend and starts following a Fourier type energy diffusion law
at long-time scales with a perfect overlapping between the
two predictions. Fourier’s prediction is calculated analyti-
cally using Green’s function method for the energy density
equation.

In the next step of the analysis, the effect of the ambient
temperature on the dynamics of the energy modes is ad-
dressed. The oscillating behavior is reported in Fig. 4 for the
case of gold at different ambient temperatures. The values of
the total scattering relaxation time �F are calculated from the
measured values of the electrical resistivity of gold at differ-
ent temperatures,24 and the values of the thermal diffusivity
De are calculated using Eq. �9�. Table II summarizes these
values at different temperatures.

The amplitude of the diffusive contribution to the total-
energy density Green’s function at the top free surface of the
metal decreases and flattens by decreasing temperature. On
the other hand, the oscillating behavior is still the same, in-
dependent of temperature and showing the same features
�Fig. 4�b��. This behavior was expected since the dominant
oscillation period �F is independent of temperature as given
by Eq. �12�.

In Fig. 5, we report separately the behavior, as a function
of the nondimensional time �, of the diffusive contribution
and the sum of the ballistic and diffusive contributions to the
total-energy density at the top free surface of gold at room
temperature as calculated based on the present work �Eqs.
�8a� and �8a���8b��, in comparison to Fourier’s model over a
long-time range of 50�F. While the ballistic contribution is

TABLE II. Properties of gold used in the calculation at different
ambient temperatures.

Temperature T
�K�

Electrical
resistivity

� �10−8 � m�

Relaxation
time

�F �fs�

Electronic thermal
diffusivity De

�m2 /s�

273 2.04 30 0.0196

169 0.592�2.04 50 0.0327

90 0.270�2.04 109 0.0712

68 0.177�2.04 167 0.1091

FIG. 3. �Color online� Comparison between the diffusive con-
tribution to the total-energy density Green’s function at the top free
surface of the different metals and Fourier’s model at room
temperature.

(b)(a)

FIG. 4. �Color online� Temporal behavior of the total-energy density Green’s function at the top free surface of gold at different
temperatures: �a� Eq. �8a� and �b� Eq. �8b� over the first 10 fs.
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the dominant one at short-time scales, it becomes insignifi-
cant after about 8�F–10�F. After that moment, the total en-
ergy is transported via a diffusive regime in which case the
temporal decay follows a Fourier type law.

As we have mentioned above, the closest non-Fourier
model to the present work is Cattaneo’s model.11 This model

has some similar features as the response function N2. More
specifically, Cattaneo’s model describes the diffusive regime
using the same formula in Eq. �8a�. On the other hand, be-
cause of the continuous character of the model, the upper
limit in the integral of Eq. �8b� is infinity, and the nondiffu-
sive regime shows a different behavior. By following the
same decomposition procedure as above, we can easily show
that the nondiffusive contribution according to Cattaneo’s
model is given by

�KCattaneo
� �t,0� =

P0

2�
e−t/2�F� �

2
− Si� t

2�F
	

�De�F

 . �13�

In order to shed more light on the difference between the
nondiffusive contributions to the total-energy density at the
top free surface of a metal, as described by Shastry’s model
and Cattaneo’s model, we plot in Fig. 6 the results of these
two models in the case of gold at room temperature for com-
parison. Due to the band cutoff effect in Shastry’s model, the
nondiffusive contribution shows an exponentially damped
oscillating behavior as a function of time. On the other hand,
because of the continuous character of Cattaneo’s model, the
oscillating behavior disappears and the nondiffusive contri-
bution shows an exponential decay as a function of time,
much faster than the diffusive contribution. The nondiffusive
contribution to the total-energy density in Cattaneo’s model

FIG. 5. �Color online� Comparison between the diffusive con-
tribution �dashed line�, the sum of the ballistic and the diffusive
contributions �solid line� to the total-energy density Green’s
function at the top free surface of gold at room temperature, and
Fourier’s model �dotted line�.

(b)

(a)

(c)

FIG. 6. �Color online� �a� Comparison between the temporal behaviors of the nondiffusive contribution to the total-energy density at the
top free surface of gold at room temperature, as calculated based on Shastry’s model �solid line �b�� and Cattaneo’s model �dashed line �c��.
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becomes insignificant after about 4�F–6�F, which is faster
than the time constant decay of the nondiffusive contribution
as calculated by Shastry’s model.

Many authors have reported the observation of an oscil-
lating behavior in the reflectivity change at the top free sur-
face of semimetals using the femtosecond pump-probe tran-
sient thermoreflectance technique.25–29 Probing the relative
change in the surface reflectivity is proportional to probing
the change in the energy density at this surface. Neverthe-
less, these oscillations have been identified as due to a gen-
eration and relaxation of coherent phonon in such semimet-
als. The frequencies of which have been confirmed using
Raman spectroscopy techniques.25–29 By consequence, these
oscillations are not related to the Bloch oscillating behavior
in the energy transport by conduction-band electrons in met-
als predicted by Shastry’s formalism.

No experiment has reported such behavior in the energy
density change at the free surface of metals due to electrons
transport. Three main reasons can explain the lack of obser-
vation: �i� the smallness of the oscillation period �1 fs�, �ii�
the optical penetration depth of metals at long excitation la-
ser wavelengths, and �iii� the convolution effect due to the
laser-pulse width which smoothes out these oscillations.

A possible candidate to observe the temporal oscillating
behavior in the energy transport is a metallic superlattice. As
suggested by Eq. �12�, the period of these oscillations is
proportional to the lattice constant, which is a consequence
of integration over the FBZ. It is well known however that
superlattices structures are characterized by a subdivision of
the electronic and phononic bands into minibands. Particu-
larly the FBZ is divided into mini Brillouin zones of width
� /d where d is the superlattice period. This spatial period d
can be one to 2 orders of magnitude larger than the lattice
constant a, which will increase the energy density oscillating
period by the same order of magnitude and bring its value
from the femtosecond regime to the picosecond regime. This
latter regime can be probed by the state of the art in femto-
second laser metrology. As a matter of fact, the conventional
Bloch oscillations have been only observed in superlattices
structures.8,9

In addition, short-pulse laser sources are in continuous
development and attosecond width pulses have been
developed.10 Even though many other resonance phenomena
of condensed matter have to be taken into account when

using these ultrashort laser pulses, we believe that using
these sources with short laser wavelengths, but are still
longer than the plasmon wavelength, will be of great help to
observe this fundamental oscillating phenomenon in the en-
ergy density change at the top free surface of metals and
metallic superlattice structures.

IV. CONCLUSIONS

The transition between ballistic and diffusive energy
transport in metals has been analyzed. An interesting tempo-
ral oscillating behavior in the energy density Green’s func-
tion at the top free surface of metals is reported. This behav-
ior in the energy transport predicted by Shastry’s formalism
is a consequence of the band cutoff due to the discrete char-
acter of the crystalline lattice. This leads to Bragg reflection
of electrons in a metal. The oscillating behavior in the energy
transport can be viewed as an energetic analogous to the
conventional Bloch oscillation in the charge density of the
conduction-band electrons of the metal. It is an interesting
manifestation of the ballistic contribution to the energy trans-
port that results from the electrons bouncing back and forth
at the boundaries of the first Brillouin zone before they damp
out into the diffusive regime due to scattering mechanisms.

Remarkably, Cattaneo’s model shows similar features to
Shastry’s formalism. More specifically, a similar decomposi-
tion in the total-energy density at the top free surface of the
metal can be made. The diffusive contribution to the energy
density is described using a formula similar to Shastry’s
model. On the other hand, because of the continuous charac-
ter of Cattaneo’s model, the nondiffusive contribution shows
no oscillations and it decays on a time constant even faster
than the one predicted by Shastry’s model.
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